Search results for "Unitary representation"
showing 10 items of 11 documents
Star representations of E(2)
1990
We give a complete and explicit realization of the unitary irreducible representations of the universal covering group G of E(2), the Euclidean group in two dimensions, by deformation of the algebra of functions on the dual g* of the Lie algebra of G. We define an adapted Fourier transform for G which gives a natural description of the harmonic analysis of G.
Operators on PIP-Spaces and Indexed PIP-Spaces
2009
As already mentioned, the basic idea of pip-spaces is that vectors should not be considered individually, but only in terms of the subspaces V r (r Є F), the building blocks of the structure. Correspondingly, an operator on a pipspace should be defined in terms of assaying subspaces only, with the proviso that only continuous or bounded operators are allowed. Thus an operator is a coherent collection of continuous operators. We recall that in a nondegenerate pip-space, every assaying subspace V r carries its Mackey topology \(\tau (V_r , V \bar{r})\) and thus its dual is \(V \bar{r}\). This applies in particular to \(V^{\#}\) and V itself. For simplicity, a continuous linear map between two…
Séparation des orbites coadjointes d'un groupe exponentiel par leur enveloppe convexe
2008
Resume Revenant sur la question de la separation des representations unitaires irreductibles d'un groupe de Lie exponentiel G par leur application moment, nous presentons ici une nouvelle solution : au lieu de prolonger l'application moment a l'algebre enveloppante de G , nous proposons de definir une application (non lineaire) Φ de g ∗ dans le dual g + ∗ de l'algebre de Lie d'un groupe resoluble G + , de prolonger les representations de G a G + de telle facon que les orbites coadjointes correspondantes de G + soient caracterisees par l'adherence de leur enveloppe convexe. Ceci nous permet de separer les representations irreductibles de G .
Separation of representations with quadratic overgroups
2011
AbstractAny unitary irreducible representation π of a Lie group G defines a moment set Iπ, subset of the dual g⁎ of the Lie algebra of G. Unfortunately, Iπ does not characterize π. If G is exponential, there exists an overgroup G+ of G, built using real-analytic functions on g⁎, and extensions π+ of any generic representation π to G+ such that Iπ+ characterizes π.In this paper, we prove that, for many different classes of group G, G admits a quadratic overgroup: such an overgroup is built with the only use of linear and quadratic functions.
Unitary Representations of U q (𝔰𝔩}(2,ℝ)),¶the Modular Double and the Multiparticle q -Deformed¶Toda Chain
2002
The paper deals with the analytic theory of the quantum q-deformed Toda chains; the technique used combines the methods of representation theory and the Quantum Inverse Scattering Method. The key phenomenon which is under scrutiny is the role of the modular duality concept (first discovered by L. Faddeev) in the representation theory of noncompact semisimple quantum groups. Explicit formulae for the Whittaker vectors are presented in terms of the double sine functions and the wave functions of the N-particle q-deformed open Toda chain are given as a multiple integral of the Mellin–Barnes type. For the periodic chain the two dual Baxter equations are derived.
Unitary Representations of the Modular and Two-Particle Q-Deformed Toda Chains
2001
The paper deals with the analytic theory of the quantum two-particle q-deformed Toda chains. This is the simplest nontrivial example clarifying the role of the modular duality concept (first discovered by L.Faddeev) in the representation theory of noncompact semisimple quantum groups. Explicit formulae for the Whittaker vectors and Whittaker functions are presented in terms of the double sine functions.
Determinant Bundles over Grassmannians
1989
Denoting by H the Hilbert space of square-integrable Dirac spinor fields on a manifold M, transforming according to a unitary representation p of a gauge group G, we have a linear representation of the group g of gauge transformations in the space H. If ρ is faithful we can consider g as a subgroup of the general linear group GL(H). By constructing representations of GL(H) we automatically obtain representations of g. It turns out that in the case when the dimension d of M is odd, g is contained in a smaller group GLp ⊂ GL(H) which has the property that it perturbs the subspace H+ ⊂ H consisting of eigenvectors of a Dirac operator belonging to positive eigenvalues, by an operator A for whic…
La representación sindical en España: cobertura y límites
2018
El objetivo de este artículo es realizar una aproximación al sistema de representación unitaria en la empresa en España a partir de una explotación estadística de los datos de las elecciones sindicales. Se trata de conocer aspectos como el alcance de la representación unitaria, la participación de los asalariados y la audiencia electoral de los sindicatos, con el objetivo de delimitar su representatividad y legitimidad. Nuestro trabajo se centra en el análisis de los tres últimos períodos electorales (2003-2007, 2007-2012 y 2012-2015), con objeto de evaluar el impacto del ciclo económico sobre la representación de los asalariados. The objective of this article is to make an approach to the …
Separation of unitary representations of connected Lie groups by their moment sets
2005
AbstractWe show that every unitary representation π of a connected Lie group G is characterized up to quasi-equivalence by its complete moment set.Moreover, irreducible unitary representations π of G are characterized by their moment sets.
Moment Map and Gelfand Transform for the Enveloping Algebra
2019
International audience; Describing the Gelfand construction for the analytic states on an universal enveloping algebra, we characterize pure states and re-find the main result of a preceding work with L. Abdelmoula and J. Ludwig on the separation of unitary irreducible representations of a connected Lie group by their generalized moment sets.